Abstract

Background In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is well established for phosphorylation of 5′ or 2′ OH of oligonucleotide substrates, phosphorylation of diffusible small molecules has not been demonstrated.Methodology/Principal FindingsThis study demonstrates the ability of T4 DNA ligase to capture RNA strands in which a tethered monodeoxynucleoside has acquired a 5′ phosphate. The ligation reaction therefore mimics the partition step of a selection for nucleoside kinase (deoxy)ribozymes. Ligation with tethered substrates was considerably slower than with nicked, fully duplex DNA, even though the deoxynucleotides at the ligation junction were Watson-Crick base paired in the tethered substrate. Ligation increased markedly when the bridging template strand contained unpaired spacer nucleotides across from the flexible tether, according to the trends: A2>A1>A3>A4>A0>A6>A8>A10 and T2>T3>T4>T6≈T1>T8>T10. Bridging T's generally gave higher yield of ligated product than bridging A's. ATP concentrations above 33 µM accumulated adenylated intermediate and decreased yields of the gap-sealed product, likely due to re-adenylation of dissociated enzyme. Under optimized conditions, T4 DNA ligase efficiently (>90%) joined a correctly paired, or T∶G wobble-paired, substrate on the 3′ side of the ligation junction while discriminating approximately 100-fold against most mispaired substrates. Tethered dC and dG gave the highest ligation rates and yields, followed by tethered deoxyinosine (dI) and dT, with the slowest reactions for tethered dA. The same kinetic trends were observed in ligase-mediated capture in complex reaction mixtures with multiple substrates. The “universal” analog 5-nitroindole (dNI) did not support ligation when used as the tethered nucleotide.Conclusions/SignificanceOur results reveal a novel activity for T4 DNA ligase (template-directed ligation of a tethered mononucleotide) and establish this partition scheme as being suitable for the selection of ribozymes that phosphorylate mononucleoside substrates.

Highlights

  • Artificial ribozymes can be selected in vitro to catalyze diverse chemical reactions [1,2,3,4]

  • Conclusions/Significance: Our results reveal a novel activity for T4 DNA ligase and establish this partition scheme as being suitable for the selection of ribozymes that phosphorylate mononucleoside substrates

  • We propose that when the intended substrate is a tethered mononucleoside(tide), an enzymatic partition step can enforce selection of the intended activity at the targeted site by exploiting the activities of enzymes such as DNA ligase that normally act upon polynucleotides

Read more

Summary

Introduction

Artificial ribozymes can be selected in vitro to catalyze diverse chemical reactions [1,2,3,4]. A second challenge that applies especially to group transfer and condensation reactions is that selections often yield ribozymes that modify themselves within the RNA chain rather than on the tethered substrate. This is likely due to entropic barriers being lower for organizing the 29OH than the quasi-diffusible tethered substrate [6,7]. In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is well established for phosphorylation of 59 or 29 OH of oligonucleotide substrates, phosphorylation of diffusible small molecules has not been demonstrated

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.