Abstract

Perceptual learning changes the way the human visual system processes stimulus information. Previous studies have shown that the human brain's weightings of visual information (the perceptual template) become better matched to the optimal weightings. However, the dynamics of the template changes are not well understood. We used the classification image method to investigate whether visual field or stimulus properties govern the dynamics of the changes in the perceptual template. A line orientation discrimination task where highly informative parts were placed in the peripheral visual field was used to test three hypotheses: (1) The template changes are determined by the visual field structure, initially covering stimulus parts closer to the fovea and expanding toward the periphery with learning; (2) the template changes are object centered, starting from the center and expanding toward edges; and (3) the template changes are determined by stimulus information, starting from the most informative parts and expanding to less informative parts. Results show that, initially, the perceptual template contained only the more peripheral, highly informative parts. Learning expanded the template to include less informative parts, resulting in an increase in sampling efficiency. A second experiment interleaved parts with high and low signal-to-noise ratios and showed that template reweighting through learning was restricted to stimulus elements that are spatially contiguous to parts with initial high template weights. The results suggest that the informativeness of features determines how the perceptual template changes with learning. Further, the template expansion is constrained by spatial proximity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call