Abstract

Aim of this study was to investigate whether a mold generated from a statistical shape model of the orbit could be generated to provide a cost-efficient means for the treatment of orbital fractures. A statistical shape model was created from 131 computed tomographic (CT) scans of unaffected adult middle European human orbits. To generate the model, CT scans were segmented in Brainlab software, preregistered using anatomic landmarks, trimmed to an identical size, and definitely registered. Then, the model was created using the global master algorithm. Based on this model, a mold consisting of a male part and a female part was constructed and printed using a rapid prototyping technique. A statistical shape model of the human orbit was generated from 125 CT scans. Six scans (4.5%) presented major anatomic deviations and were discarded. A solid mold based on this model was printed. Using this mold, flat titanium mesh could be successfully deformed to serve as an orbital implant. A mold based on the statistical orbital shape could serve as a cost-effective means for the treatment of orbital fractures. It allows the anatomic preformation of titanium or resorbable implant material for orbital reconstruction. Because these materials could be cut from larger sheets, the use of a mold would be a cost-effective treatment alternative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.