Abstract

We propose a probabilistic classifier for multi-touch gestures specified by users themselves. The template-based gesture classifier allows selecting gesture types more freely without constraints regarding implementation issues and considers multi-finger or bi-manual operations. The statistical approaches to the classification scheme are presented. The basic concepts of separating input into tokens, retrieving local features and applying a new method of sensor fusion under uncertainty are adaptive to broader application ranges. Results from testing against a set of sophisticated samples show that this approach performs well and, while recognition benefits from more complex gestures, it also distinguishes subtly different gestures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.