Abstract
We propose a probabilistic classifier for multi-touch gestures specified by users themselves. The template-based gesture classifier allows selecting gesture types more freely without constraints regarding implementation issues and considers multi-finger or bi-manual operations. The statistical approaches to the classification scheme are presented. The basic concepts of separating input into tokens, retrieving local features and applying a new method of sensor fusion under uncertainty are adaptive to broader application ranges. Results from testing against a set of sophisticated samples show that this approach performs well and, while recognition benefits from more complex gestures, it also distinguishes subtly different gestures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.