Abstract
Herein, we report two distinct octaphyrins obtained by the condensation of new dithieno[3,2-b:2',3'-d]pyrrole based tetrapyrrane under two different acidic conditions. Fourfold meso-substituted octaphyrin was the major product when the reaction was performed in the presence of an aryl aldehyde using trifluoroacetic acid. Whereas, the sixfold meso-substituted octaphyrin was obtained when the precursor was condensed with pentafluorobenzaldehyde using para-toluenesulfonic acid. Such a template effect of aryl aldehydes in oxidative coupling reactions is realized for the first time in literature. Experimental and theoretical studies suggested that the oxidized form of fourfold meso-substituted octaphyrin is 32π antiaromatic and undergoes proton-coupled electron transfer (PCET) to the protonated form of 34π aromatic congener upon treatment with protic acids. Furthermore, small organic molecules such as alcohols and amines were also found to promote chemical reduction. Single crystal X-ray structure revealed that the aromatic counterpart is highly planar and stabilized by several intermolecular H-bonding and F-F interactions, leading to a large 3D supramolecular arrangement and exhibited colorimetric sensing for fluoride and hydroxide anions. On the other hand, sixfold meso-substituted octaphyrin did not show (anti)aromatic features, PCET or anion sensing, but its intriguing absorption features associated with protonation could make it an ideal candidate for pH-dependent bioimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.