Abstract

We have demonstrated a simple and effective hydrothermal route to synthesize titania mesoporous spheres with hollow core-shell structure. The synthesis is free of any surfactants or templates. The formation mechanism is investigated on the basis of the results of time-dependent experiments. The as-obtained mesoporous titania spheres with a specific surface area of 21.5 m2 g−1 and diameters of 1.2–2.3 μm are composed of anatase titania nanocrystals. The excellent light scattering property of mesoporous titania spheres with hollow core-shell structure is proved. A higher cell efficiency of 8.27% is achieved with mesoporous titania spheres with hollow core-shell structure as a light scattering layer, compared with a cell efficiency of 6.63% for the P25 film electrode with the similar thickness. The higher cell efficiency is attributed to the hollow core-shell structure scattering layer, resulting in excellent pore fitting for electrolyte diffusion, enhanced light scattering ability, and reduced charge recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call