Abstract

Future parallel computers must efficiently execute not only hand-coded applications but also programs written in high-level, parallel programming languages. Today's machines limit these programs to a single communication paradigm, either message-passing or shared-memory, which results in uneven performance. The authors address this problem by defining an interface, Tempest, that exposes low-level communication and memory-system mechanisms so programmers and compilers can customize policies for a given application. Typhoon is a proposed hardware platform that implements these mechanisms with a fully-programmable, user-level processor in the network interface. The authors demonstrate the utility of Tempest with two examples. First, the Stache protocol uses Tempest's fine-grain access control mechanisms to manage part of a processor's local memory as a large, fully-associative cache for remote data. The authors simulated Typhoon on the Wisconsin Wind Tunnel and found that Stache running on Typhoon performs comparably (/spl plusmn/30%) to an all-hardware Dir/sub N/NB cache-coherence protocol for five shared-memory programs. Second, they illustrate how programmers or compilers can use Tempest's flexibility to exploit an application's sharing patterns with a custom protocol. For the EM3D application, the custom protocol improves performance up to 35% over the all-hardware protocol.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.