Abstract

The mechanical response of almost pure single-crystal micro-pillars under compression exhibits a highly localized behavior that can endanger the structural stability of a sample. Recent experiments revealed that the mechanical response of a crystal is very sensitive to both the presence of a quenched disorder in the sample, and the orientation of the crystal. In this work, we study the influence of disorder and crystal orientation on the large 2-D plane strain response of a FCC crystal with three active glide planes using a very simple Eulerian plasticity model in the FE framework. Our numerical and theoretical results on clean crystal pillars suggest that a single plane or many gliding planes can be activated depending on the crystal orientation. While in the former case, the deformation is localized, leading to ductile rupture, in the latter, a complex interplay between active planes takes place, resulting in a more uniform deformation. The strain-localization can be avoided when inhomogeneities are engineered inside the crystal, or the crystal orientation is altered because of the activation of multiple slip systems, resulting in a ”patchwork” of the distribution of the slip systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.