Abstract

On-chip manipulation of photon emission from quantum emitters (QEs) is crucial for quantum nanophotonics and advanced optical applications. At the same time, the general design strategy is still elusive, especially for fully exploring the degrees of freedom of multiple channels. Here, the vectorial scattering holography (VSH) approach developed recently for flexibly designing QE-coupled metasurfaces is extended to tempering the strength of QE emission into a particular channel. The VSH power is demonstrated by designing, fabricating, and optically characterizing on-chip QE sources emitted into six differently oriented propagation channels, each representing the entangled state of orthogonal circular polarizations with different topological charges and characterized with a specific relative strength. We postulate that the demonstration of tempered multichannel photon emission from QE-coupled metasurfaces significantly broadens the possibilities provided by the holographic metasurface platform, especially those relevant for high-dimensional quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call