Abstract

This paper reports a study of tempered martensite embrittlement in a Ni-Cr steel doped with 0.01 wt pct S. The segregation of sulfur to the grain boundaries and the associated embrittlement of this material are very dependent upon the austenitizing temperature. If the austenitizing temperature is below 1050 °C very little embrittlement and very little intergranular fracture are observed because sulfur remains precipitated as chromium sulfide. At higher austenitizing temperatures the sulfides dissolve and sulfur segregates to the grain boundaries. Because of the high bulk content, the sulfur concentration at the grain boundaries becomes great enough for the sulfides to reprecipitate there. This leads to low energy intergranular ductile fracture. However, some sulfur remains unprecipitated at the boundary and can lower the cohesive strength across the boundary. When plate-like cementite precipitates at the grain boundary during tempering heat treatments at 300 to 400 °C, the combination of the carbides and the unprecipitated sulfur causes intergranular fracture and tempered martensite embrittlement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.