Abstract

The Davenport spectrum is a modification of the classical Kolmogorov spectrum for the inertial range of turbulence that accounts for non-scaling low frequency behavior. Like the classical fractional Brownian motion vis-à-vis the Kolmogorov spectrum, tempered fractional Brownian motion (tfBm) is a new model that displays the Davenport spectrum. The autocorrelation of the increments of tfBm displays semi-long range dependence (hyperbolic and quasi-exponential decays over moderate and large scales, respectively), a phenomenon that has been observed in a wide range of applications from wind speeds to geophysics to finance. In this paper, we use wavelets to construct the first estimation method for tfBm and a simple and computationally efficient test for fBm vs tfBm alternatives. The properties of the wavelet estimator and test are mathematically and computationally established. An application of the methodology shows that tfBm is a better model than fBm for a geophysical flow data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.