Abstract
The effect of two missense mutations in abl on transformation by Abelson murine leukemia virus was evaluated. These mutations led to the substitution of a histidine for Tyr-590 and a glycine for Lys-536. Both changes gave rise to strains that were temperature dependent for transformation of both NIH 3T3 cells and lymphoid cells when expressed in the context of a truncated Abelson protein. In the context of the prototype P120 v-abl protein, the Gly-536 substitution generated a host range mutant that induced conditional transformation in lymphoid cells but had only a subtle effect on NIH 3T3 cells. The combination of both substitutions gave rise to a P120 strain that was temperature sensitive for both NIH 3T3 and lymphoid cell transformation. The Abelson proteins encoded by the temperature-sensitive strain displayed in vitro kinase activities that were reduced when compared with those of wild-type proteins. In vivo, levels of phosphotyrosine were reduced only at the restrictive temperature. Analysis of cells expressing either the wild-type P160 v-abl protein or the P210 bcr/abl protein and an Abelson protein encoded by a temperature-sensitive strain failed to correct this defect, suggesting either that tyrosine phosphorylation in vivo is an intramolecular reaction or that the protein encoded by the temperature-sensitive strain is a poor substrate for tyrosine phosphorylation in vivo. These results raise the possibility that tyrosine phosphorylation of Abelson protein plays a role in transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.