Abstract

Intracellular siRNA release is a crucial step in efficient gene silencing mediated by cationic polymers. Here, we show an example of temperature change-induced intracellular siRNA release and silencing using a temperature-responsive polymer consisting of dendrimer, poly(N-isopropylacrylamide) and phenylboronic acid. The smart polymer can trigger the release of loaded siRNA in a controlled manner upon cooling the surrounding solution below its lower critical solution temperature. Gene silencing efficacy of the polymer was significantly increased by cool treatment after its cellular uptake. The polymer and the cool treatment cause minimal toxicity to the transfected cells. The results provide a facile and promising strategy to design stimuli-responsive polymers for efficient gene silencing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call