Abstract

Abstract Elastic modulus plays a key role in the application of porous metallic materials. However, to the best of our knowledge, few attempts have been made to model the simultaneous dependence of elastic modulus on temperature and porosity for metallic materials. The present article contributes to a rational temperature-porosity-dependent elastic modulus model for metallic materials with all parameters having definite physical significance. The model can well predict the elastic moduli of porous metallic materials, from extremely low temperature to ultrahigh temperature, and from dense material to about 0.9 porosity, with reference to an easy-to-access elastic modulus. In a special case, when intrinsic elastic modulus [M] = 2 and critical porosity P C = 1, a phenomenological parameter-free predictive model can be obtained. The model can be applied when the matrix Poisson ratio is 0.1 < v < 0.4 for Young’s modulus and 0.17 < v < 0.27 for shear modulus, which covers most metallic porous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.