Abstract

Modeling the effect of temperature on the sustainability of insect-plant interactions requires assessment of both insect and plant performance. We examined the effect of temperature on western flower thrips, Frankliniella occidentalis (Pergande), a generalist herbivore with a high reproductive rate, and chrysanthemum inflorescences, a high quality but relatively fixed, ephemeral resource for thrips population growth. We hypothesized that different thrips versus plant responses to temperature result in significant statistical interaction of temperature with thrips abundance and flower damage attributes over time. Experiments were conducted at five temperatures between 20.7 and 35.3 degrees C, with thrips infestation and time after infestation as main effects. Only minor, uncontrolled variations in relative humidity and light intensity may otherwise have influenced the results. High temperatures lead to an initially rapid increase in density of thrips followed by abrupt declines in abundance. The rate of floral senescence increased with temperature and thrips infestation, as indicated by a reduced fresh biomass and greater leaching of yellow pigments. Multiple regression indicated that indices of plant damage responded more directly to thrips density at low than high temperature, supporting the conclusion that temperature affected the outcome beyond what was predictable simply from differential plant and insect optima. The relative intensity of damage caused by individual thrips decreased with increasing temperature, likely caused by thrips competition and reduced survival, growth, and fecundity on depleted inflorescences. Reduced per capita damage at high temperature may be common in insects exploiting fixed plant resources that exhibit an accelerated rate of deterioration at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call