Abstract

A temperature‐induced gelation method has been developed for the preparation of sialon green bodies composed of Si3N4, AlN, Y2O3, and Al2O3. Using a polyester/polyamine condensation polymer as dispersant, stable suspension containing sialon, precursor powders could be prepared in methyl ethyl keton (MEK)/ethanol (E) solvent mixture with solids loading as high as 60 vol%. The solvency of the dispersant in MEK/E decreased dramatically on cooling. The sedimentation tests showed that the settling behavior changed from slow accumulation at ∼20°C to fast deposition of clusters at −15°C, because of the collapse of dispersant chains adsorbed at the surface of the particles. Steady shear viscosity and oscillatory measurements performed for 60 vol% suspensions as functions of temperature and added amounts of dispersant proved that suspensions were of low viscosity and high stability at room temperature, becoming predominantly very highly viscous and elastic as temperature decreased. The gelation mechanism was mainly based on the coiling up of dissolved dispersant molecules, inducing in situ gelation and the formation of a rigid network bridging the suspended particles. The green bodies showed negligible shrinkage during gelation, a small shrinkage during drying, homogeneous microstructures, narrow pore size distributions, and high relative density. It was possible to achieve dense α‐sialon ceramics through pressureless sintering at 1750°C for 2 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.