Abstract

The conformation of a single elastin-like peptide GVG(VPGVG)3 in liquid water is studied by computer simulations in the temperature interval between 280 and 440 K. Two main conformational states of the peptide can be distinguished: a rigid conformational state, dominating at low temperatures, and a flexible conformational state, dominating at high temperatures. A temperature-induced transition between these states occurs at about 310 K, rather close to a transition temperature seen in experiments. This transition is accompanied by the thermal breaking of the hydrogen-bonded spanning network of the hydration water via a percolation transition upon heating. This finding indicates that the H-bond clustering structure of the hydration water plays an important role in the conformational stability of biomolecules. A second important observation is the Gaussian distribution of the end-to-end distance in the high-temperature state, which supports the idea of a rubber-like elasticity of the studied elastin-like peptide. Finally our results challenge the idea of the folding of elastin-like peptides upon heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.