Abstract
Athermal operation of silicon waveguides for the TM and TE mode is achieved using the bridged subwavelength grating (BSWG) waveguide geometry. For the TM mode the experimental results show that the temperature-induced wavelength shift (dλ/dT) is an order of magnitude smaller for the BSWG waveguides with grating duty cycle, waveguide and bridge widths of 42%, 490 nm and 220 nm, respectively, as compared to standard photonics wires (PW). For the TE mode similar results are achieved by using the bridge width of 200 nm and similar duty cycle and waveguide width. A temperature-induced shift of only -2.5 pm/°C is reported for the TM polarized light. Propagation losses of BSWG waveguides for both polarizations were measured to be about 8 dB/cm, comparable to that of PWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.