Abstract

A novel fiber optic accelerometer is proposed and demonstrated. The sensing mechanism is based on the measurement of bandwidth and optical power of a strain-chirped fiber Bragg grating (FBG). An initially-uniform FBG is glued with a slanted direction onto the lateral surface of a simply-supported beam. Two masses are fixed on the top and bottom surfaces in the middle of the beam respectively, which can transfer the vertical acceleration to the deflection of the beam. Therefore, deflection induced nouniform strain is applied along the sensing FBG and makes it chirped. Experimental results show that 3-dB bandwidth and reflected optical power of the strain-chirped FBG responds to acceleration sensitively. The achieved sensitivities are up to 0.4 nm/g and 4.57 μW/g respectively in the linear range. Furthermore, this sensor is very cost-effective and inherently insensitive to temperature due to the simple demodulation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.