Abstract

AbstractIn this article, the vibrational analysis of temperature-dependent cylindrical functionally graded (FG) microshells surrounded by viscoelastic a foundation is investigated by means of the modified couple stress theory (MCST). MCST is applied to this model to be productive in design and analysis of micro actuators and micro sensors. The modeled cylindrical FG microshell, its equations of motion and boundary conditions are derived by Hamilton’s principle and the first-order shear deformation theory (FSDT). For the first time, in the present study, functionally graded length scale parameter which changes along the thickness has been considered in the temperature-dependent cylindrical FG microshell. The accuracy of the present model is verified with previous studies and also with those obtained by analytical Navier method. The novelty of the current study is consideration of viscoelastic foundation, various thermal loadings and size effect as well as satisfying various boundary conditions implemented on the temperature-dependent cylindrical FG microshell using MCST. Generalized differential quadrature method (GDQM) is applied to discretize the equations of motion. Then, some factors are investigated such as the influence of length to radius ratio, damping, Winkler and Pasternak foundations, different temperature changes, circumferential wave numbers, and boundary conditions on natural frequency of the cylindrical FG microshell. The results have many applications such as modeling of microrobots and biomedical microsystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call