Abstract
Exploring the settlement dynamics of the planula larvae is critical to understanding the establishment of polyp populations that can give rise to blooms of scyphozoan jellyfish. We conducted experiments to examine the effects of temperature on settlement of planulae of the scyphozoans Cyanea lamarckii and Chrysaora hysoscella, two jellyfish commonly encountered within the North Sea. When provided immediate access to substrate, larvae of C. lamarckii were able to settle at each of 12 temperatures between 9 and 27 °C. Most settlement occurred within the first five days and warmer temperatures were not only associated with decreased time to settlement but also increased settlement success. When not allowed access to substrate and maintained in the water column, planula larvae remained competent to settle for 21, 21 and 14 days at 11.3, 13.4 and 19.4 °C, respectively. Based on these maximum times of competency, hydrodynamic model simulations suggested that the planula larvae of C. lamarckii released in May could be transported up to 100 km before settlement. A substrate choice experiment indicated that larvae of C. hysoscella settled in similar numbers onto PET, wood and concrete. Settlement was highest at 20 °C and a 12/12 light/dark regime and lower at 10 °C and 15 °C in total darkness. The results of all three experiments suggest that projected warming of the North Sea will not impede the settlement of planula larvae of resident C. lamarckii and C. hysoscella populations. Species- and/or population-specific differences may exist in the ecophysiology of planula larvae and additional experiments are needed to understand the mechanisms promoting the establishment of new benthic populations of polyps. That information, combined with process knowledge on the productivity of benthic polyps, will be needed to better understand and predict climate-dependent changes in the production of scyphozoans and other gelatinous plankton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.