Abstract
The reaction of the simplest Criegee intermediate CH2OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10-13 cm3 s-1. The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH2OO with H2S is 2-3 orders of magnitude faster than the reaction with H2O monomer. Though rates of CH2OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H2S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH2OO + H2S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.