Abstract

Ultrafast optical Kerr effect (OKE) spectroscopy has been used to study the temperature-dependent dynamics of five aromatic liquids: benzene, benzene-d(6), hexafluorobenzene, mesitylene, and 1,3,5-trifluorobenzene. The intermediate response time of all of the liquids was found to scale with the collective orientational correlation time, as has been observed for other simple liquids. The spectra of hexafluorobenzene, 1,3,5-trifluorobenzene, and mesitylene are qualitatively different from those of the other liquids and exhibit different behavior with temperature. These spectra allow us to assess the influence of different molecular parameters on the shape of the OKE spectrum. On the basis of these data, we propose a model that links the differences in the OKE spectra to corresponding differences in the local ordering of the liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call