Abstract
In this work, polycrystalline KBiFe2O5 (KBFO), belonging to the brownmillerite class of monoclinic structure with space group P2/c, is synthesized using a solid-state reaction route. Magnetodielectric (MD) and magnetoimpedance (MI) characteristics of KBFO are studied over a wide temperature (10–300 K), magnetic field (0–1.3 T), and frequency (100 Hz to 1 MHz) range. Zero-field-cool (ZFC) and field-cool (FC) magnetization data show a bifurcation around 11 K, indicating blocking temperature (TB). At room temperature, MD and MI data as a function of the magnetic field shows maximum MD and MI coupling to be ∼−0.6% and ∼0.7%, respectively, at 50 kHz. With the decrease in temperature from 300 K to 50 K, magnetodielectric strength decreases (−0.6% to −0.06%), whereas magnetization increases from canted-antiferromagnetic (MS ≈ 0.16 emu g−1) to a weak ferromagnetic state (MS ≈ 0.44 emu g−1). It indicates the existence of Inverse Dzyaloshinskii-Moriya interaction causing MD coupling in KBFO. MD behavior is also reflected in magnetic field-dependent dielectric relaxation phenomena demonstrated through magnetic field-dependent activation energies. The difference in activation energies of magnetic field-dependent conduction mechanism (Eg ≈ 0.370 ± 0.018 eV) and MD loss relaxation (Eg ≈ 0.183 ± 0.006 eV) indicate both have a different origin. The presence of the capacitive MI effect demonstrates that the observed magnetodielectric coupling is intrinsic. The existence of both temperatures-dependent MD and MI coupling in KBFO makes it suitable for dynamic random access memory as well as novel magnetic sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.