Abstract
The electrical and optical characteristics of AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) (265-365 nm) at elevated temperatures (25/spl deg/C-175/spl deg/C) were investigated, and compared to those of InGaN-based visible LEDs (400-465 nm). Strong carrier localization and localized-state emission were retained in the InGaN LEDs up to 175/spl deg/C, leading to temperature-independent emission intensity at low-energy tails. The deep-UV LEDs, however, showed dominant band-edge emission, much smaller alloy broadening, and weaker localization effects. The optical power of the UV LEDs decreased much more rapidly with increasing temperature. The characteristic temperature was in the range of 31-73 K, and decreased with increasing Al content in the active region. These findings implicate the lack of localization effects in AlGaN alloys as one of the causal factors in the poor thermal performance of the UV LEDs and suggest that increasing carrier-confining potentials will provide a critical means to improve their radiative efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.