Abstract

This paper studies the temperature dependence of the electrical resistivity of low-cost commercial graphene-based strips, made from a mixture of epoxy and graphene nanoplatelets. An equivalent homogenous resistivity model is derived from the joint use of experimental data and simulation results obtained by means of a full three-dimensional (3D) numerical electrothermal model. Three different types of macroscopic strips (with surface dimensions of cm2) are analyzed, differing in their percentage of graphene nanoplatelets. The experimental results show a linear trend of resistivity in a wide temperature range (−60°C to +60°C), and a negative temperature coefficient . The derived analytical model of temperature-dependent resistivity follows the simple law commonly adopted for conventional conducting materials, such us copper. The model is then validated by using the graphene strips as heating elements by exploiting the Joule effect. These results suggest that such materials can be used as thermistors in sensing or heating applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.