Abstract
AbstractMathematical simulation of biological fluids is of upmost significance due to its numerous medical uses. Interpreting various biological flows necessitates a thorough knowledge of the peristaltic mechanism. This paper presents a computational study for the peristaltic pumping within vertical asymmetric channels filled with BN‐EG nanofluid under the influence of temperature‐dependent electrical conductivity and thermal radiation. Experimental study showed that the nanofluid created by suspending Boron Nitride particles in a combination of Ethylene Glycol exhibited non‐Newtonian characteristics. Further, the Carreau's fluid model provides accurate predictions about the rheological properties of BN‐EG nanofluid. Various configurations of the outer boundaries are considered, namely, square wave, multi‐sinusoidal wave, trapezoidal wave, and triangular wave. A uniform magnetic field together with nanoparticles and mass concentrations, joule heating, first‐order chemical reaction as well as viscous dissipation are considered. Influences of the Dufour and Soret numbers are examined, and the cases of biological scientific assumptions which is known as low Reynolds number and long wavelength are applied. All the computations are obtained numerically using Mathematica symbolical software (ND‐Solve), and the obtained results are presented in terms of the axial velocity u, heat transfer rate Z, concentration profile Ω, temperature profile θ, extra stress tensor , pressure gradient , pressure rise and stream function ψ. The major outcomes revealed that the maximizing in electrical conductivity coefficient, variable viscosity coefficient and magnetic field parameter is better to obtain a higher rate of the heat transfer while the increase in thermo‐diffusion effects as well as linear thermal radiation coefficient causes a reduction in the rate of heat transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.