Abstract
The temperature dependence of coherent carrier transport in quantum cascade lasers (QCLs) is studied in this paper. It was found that coherent carrier transport in QCLs decreases as the temperature increases because the coherence between the injector and active region energy levels decays at a faster rate with increasing temperature. Calculations show that the coherence time decreases by at least a factor of two as the temperature increases from 100 K to room temperature. Electron transport from the injector regions into the active regions and vice versa is a highly coherent process that becomes less efficient with decreasing coherence time and hence becomes less efficient with increasing temperature. As a consequence, when the temperature increases, the population of the upper lasing levels in active regions decreases, the population of the lower lasing levels increases and performance suffers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.