Abstract

A unique transformation of WO3 nanowires (NW-WO3) into hexagonal prisms (HP-WO3) was demonstrated by tuning the temperature of the (N2H4)WO3 precursor suspension prepared from tungstic acid and hydrazine as a structure-directing agent. The precursor preparation at 20 °C followed by calcination at 550 °C produced NW-WO3 nanocrystals (ca. <100 nm width, 3-5 μm length) with anisotropic growth of monoclinic WO3 crystals to (002) and (200) planes and a polycrystalline character with randomly oriented crystallites in the lateral face of nanowires. The precursor preparation at 45 °C followed by calcination at 550 °C produced HP-WO3 nanocrystals (ca. 500-1000 nm diameter) with preferentially exposed (002) and (020) facets on the top-flat and side-rectangle surfaces, respectively, of hexagonal prismatic WO3 nanocrystals with a single-crystalline character. The HP-WO3 electrode exhibited the superior photoelectrochemical (PEC) performance for visible-light-driven water oxidation to that for the NW-WO3 electrode; the incident photon-to-current conversion efficiency (IPCE) of 47% at 420 nm and 1.23 V vs RHE for HP-WO3 was 3.1-fold higher than 15% for the NW-WO3 electrode. PEC impedance data revealed that the bulk electron transport through the NW-WO3 layer with the unidirectional nanowire structure is more efficient than that through the HP-WO3 layer with the hexagonal prismatic structure. However, the water oxidation reaction at the surface for the HP-WO3 electrode is more efficient than the NW-WO3 electrode, contributing significantly to the superior PEC water oxidation performance observed for the HP-WO3 electrode. The efficient water oxidation reaction at the surface for the HP-WO3 electrode was explained by the high surface fraction of the active (002) facet with fewer grain boundaries and defects on the surface of HP-WO3 to suppress the electron-hole recombination at the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.