Abstract

As extraction solvents, ionic liquids have green characteristics. In this study, an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples. Significant parameters that may affect extraction efficiencies were examined and optimized, including the types and amount of ionic liquids, volume of the diluent, heating temperature, cooling time, salt effect and pH value. Under the optimum conditions, linearity of the method was observed in the ranges of 0.0100–100 μg L−1 for TCS and M-TCS, and 0.00500–50.0 μg L−1 for TCC with correlation coefficients (r2) > 0.9903. The limits of detection (LODs) ranged from 1.15 to 5.33 ng L−1. TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μg L−1, respectively. The spiked recoveries of the three target compounds in reclaimed water, irrigating water, waste water and domestic water samples were obtained in the ranges of 68.4%–71.9%, 61.6%–87.8%, 58.9%–74.9% and 64.9%–92.4%, respectively. Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS, TCC and M-TCS, this method is not only more environmentally friendly but also more sensitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.