Abstract

Next-generation transparent conductors (TCs) require excellent electromechanical durability under mechanical deformations as well as high electrical conductivity and transparency. Here we introduce a method for the fabrication of highly conductive, low-porosity, flexible metal grid TCs via temperature-controlled direct imprinting (TCDI) of Ag ionic ink. The TCDI technique based on two-step heating is capable of not only stably capturing the Ag ionic ink, but also reducing the porosity of thermally decomposed Ag nanoparticle structures by eliminating large amounts of organic complexes. The porosity reduction of metal grid TCs on a glass substrate leads to a significant decrease of the sheet resistance from 21.5 to 5.5 Ω sq−1 with an optical transmittance of 91% at λ = 550 nm. The low-porosity metal grid TCs are effectively embedded to uniform, thin and transparent polymer films with negligible resistance changes from the glass substrate having strong interfacial fracture energy (~8.2 J m−2). Finally, as the porosity decreases, the flexible metal grid TCs show a significantly enhanced electromechanical durability under bending stresses. Organic light‐emitting diodes based on the flexible metal grid TCs as anode electrodes are demonstrated.

Highlights

  • Cost-effective and solution-processed metal grid transparent conductors (TCs) on flexible substrates have been reported using two different fabrication schemes: (1) grid-patterned cavity is formed into a polymer substrate using hot embossing process and is filled with metal nanoparticle (NP) ink[14,15,16]

  • In order to resolve this problem, we introduce a novel temperature-controlled direct imprinting (TCDI) process of Ag ionic ink based on two-step heating for the generation of highly conductive, low-porosity, flexible metal grid TCs

  • The TCDI of Ag ionic ink, which involves the two-step heating, is schematically illustrated in Fig. 1a: (i) Ag ionic ink (10 μL) was imprinted on a fluorinated glass substrate using a grid-patterned mold under low pressure (P = 120 kPa) and low temperature; (ii) the first heating step was performed at an evaporation temperature (TE) of 50 °C over 5 min to stably capture the Ag ionic ink inside the grid-patterned cavity

Read more

Summary

Introduction

Cost-effective and solution-processed metal grid TCs on flexible substrates have been reported using two different fabrication schemes: (1) grid-patterned cavity is formed into a polymer substrate using hot embossing process and is filled with metal nanoparticle (NP) ink[14,15,16] This method facilitates the fabrication of metal grid structures with the relatively high aspect ratio (=height/width), while they should be sintered at low temperature (

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.