Abstract

Thermal properties of biological tissues play a critical role in the study of tumor angiogenesis and the design and monitoring of thermal therapies. To map thermal parameters noninvasively, we propose temperature-change-based thermal tomography (TTT) that relies on relative temperature mapping using magnetic resonance imaging (MRI). Our approach is unique in two aspects: (1) the steady-state body temperature in thermal equilibrium is not restricted to be spatially invariant, and (2) absolute temperature mapping is not required. These two features are physiologically realistic and technically convenient. Our numerical simulation indicates that a (9 mm)3 tumor inside a breast phantom can be reliably depicted, assuming moderate temperature mapping accuracy of 0.5°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.