Abstract

The influence of a temperature default on ribosomal RNA (rRNA) secondary structure models was studied with the "Mfold" energy-optimization program. Folding models of the internal transcribed spacer (ITS) 1 rRNA for both Drosophila simulans (Insecta) and Isabellaria adriani (Gastropoda) were generated at two different temperatures. The folding models are compared with the models previously shown for the ITS-1 of D. melanogaster Oregon R strain and I. adriani. A search for phylogenetically informative ITS-1 folding motifs was conducted for D. simulans. In I. adriani, a new approach for ITS-1 secondary structure analyses is suggested. The paper also elucidates results inferred from three energy-optimizing programs (Mfold, GeneBee, and STAR). These three folding programs give different information on the structure and free energy of a ITS-1 rRNA molecule. Furthermore, secondary-structure models of the small subunit (ssu) rRNA of Daphnia pulex (Crustacea: Cladocera) were investigated. The ssu rRNA molecule is usually folded according to alignment information. Here, ssu folding patterns are computed with Mfold using two temperature conditions. The two Mfold models are compared with the alignment model previously suggested for D. pulex. Three cladoceran-specific motifs and a short stem motif within the ssu rRNA of eukaryotes are discussed with respect to structure and phylogenetic information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.