Abstract

We analyzed the data from a replica exchange molecular dynamics simulation using the weighted histogram analysis method to combine data from all of the temperature replicas (T-WHAM) to obtain the room-temperature potential of mean force of the G-peptide (the C-terminal beta-hairpin of the B1 domain of protein G) in regions of conformational space not sampled at room temperature. We were able to determine the potential of mean force in the transition region between a minor alpha-helical population and the major beta-hairpin population and identify a possible transition path between them along which the peptide retains a significant amount of secondary structure. This observation provides new insights into a possible mechanism of formation of beta-sheet secondary structures in proteins. We developed a novel Bayesian statistical uncertainty estimation method for any quantity derived from WHAM and used it to validate the calculated potential of mean force. The feasibility of estimating regions of the potential of mean force with unfavorable free energy at room temperature by T-WHAM analysis of replica exchange simulations was further tested on a system that can be solved analytically and presented some of the same challenges found in more complex chemical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.