Abstract
At the present work, impedance spectroscopy of nanocrystalline silicon carbide (3C-SiC) has been investigated as a function of temperature. Nanocrystalline 3C-SiC particles irradiated by neutrons (2 × 1013 n cm− 2s− 1) up to 20 h. Impedance of neutron-irradiated nanocrystalline 3C-SiC has been studied at the temperature range of 100–400 K. Impedance spectra of the nanocrystal have been comparatively studied before and after neutron irradiation. The natures of conductivity and the metal—semiconductor transition temperature (TMS = 250 K, 325 K, and 370 K at the various frequencies) have been defined from the complex impedance spectroscopy. Polarization of nanocrystalline 3C-SiC increased corresponding to neutron irradiation duration. The mechanism of all effects observed in the experiments has been given in the work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.