Abstract

Climate warming and pharmaceutical contaminants have profound impacts on population dynamics and ecological community structure, yet the consequences of their interactive effects remain poorly understood. Here, we explore how climate warming interacts with pharmaceutical-induced boldness change to affect aquatic ecosystems, built on an empirically well-informed food-chain model, consisting of a size-structured fish consumer, a zooplankton prey, and a fish predator. Climate warming is characterized by both daily mean temperature (DMT) and diurnal temperature range (DTR) in our model. Results show that DMT and high levels of species’ boldness are the primary drivers of community instability. However, their interactive effects can lead to diverse outcomes: from predator collapse to coexistence with seasonality-driven cycles and coexistence with population interaction-driven cycles. The interactive effects are significantly modulated by daily temperature variability, where moderate DTR counteracts the destabilizing interactive effects by increasing consumer reproduction, while large temperature variability considerably reduces consumer biomass, destabilizing the community at high mean temperatures. Our analyses disentangle the respective roles of DMT, DTR and boldness in mediating the response of aquatic ecosystems to the impacts from pharmaceutical contaminants in the context of climate warming. The interactive effects of the environmental stressors reported here underscore the pressing need for studies aimed at quantifying the cumulative impacts of multiple environmental stressors on aquatic ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.