Abstract

Reduced graphene oxide coated soda lime glass can act as an alternative transparent/conducting electrode for many opto-electronic applications. However, bonding between the deposited reduced graphene oxide film and the glass substrate is important for achieving better stability of the coating and an extended device lifetime. In the present study, delamination energy of reduced graphene oxide on soda lime glass was quantified by using nanoscratch technique. Graphene oxide was deposited on soda lime glass by dip coating technique and was thermally reduced at different temperatures (100°C, 200°C, 300°C, 400°C and 500°C) and treatment time (2h, 3h, 4h, 5h and 10h) in Ar (95%) with H2 (5%) atmosphere. An inverse behavior of delamination energy with temperature and treatment time was observed, which could be correlated with the removal of oxygen functional groups. Sheet resistance of the film demonstrated a steady decay with increasing temperature and treatment time. Functional groups attached to the graphene planes have more influence on conductivity than groups attached to the edges. Removal of functional groups could also be related to optical transmittance of the samples. Knowledge generated in this study with respect to delamination energy, sheet resistance and optical transmittance could be extensively used for various opto-electronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.