Abstract

The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL) was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but—unexpectedly—they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.

Highlights

  • The distribution of species may be determined in part by their ability to withstand sources of abiotic and biotic stress that vary clinally [1,2]

  • We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions

  • We addressed the following questions: (1) Do resistance and tolerance to frost and heat co-vary with latitude? (2) Does a negative genetic correlation exist between thermal-stress resistance and tolerance to the same temperature stress, and to different temperature stress? (3) Does a negative genetic correlation exist between thermal-stress resistance or tolerance and plant performance under no stress? Our first experiment compared populations along two parallel latitudinal gradients of 6 and 10° from North Carolina to New York and from Missouri to Ontario (S1 Table, Fig 1)

Read more

Summary

Introduction

The distribution of species may be determined in part by their ability to withstand sources of abiotic and biotic stress that vary clinally [1,2]. Life history theory predicts that coping with stress is likely to entail costs in other traits related to fitness [4,5]. These costs—referred to as trade-offs—may be important in determining species distribution limits. This is because the benefits of resistance are unnecessary in a highly tolerant individual, and the benefits of tolerance are rarely realized in a highly resistant individual [11] Maximization of both traits confers limited benefits while causing greater fitness costs than having either resistance or tolerance.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.