Abstract

A series of 0-D, 1-D, and 2-D metal-organic compounds through reactions of quinoline-2,3-dicarboxylic acid (2,3-H(2)qldc) with transition metal salts MCl(2), namely, M(2,3-Hqldc)(2)(H(2)O)(2) (M = Co(1), Zn(4) and Cd(7)), [M(3-qlc)(2)(H(2)O)(2)](n) (M = Co(2), Zn(5) and Cd(8)), M(2-qldc-3-OCH(3))(2)(CH(3)OH)(2) (M = Co(3) and Zn(6)) and [Cd(2,3-qldc-OCH(3))(μ(2)-Cl)](2n) (9) (where, 3-Hqlc = quinoline-3-carboxylic acid and 2-qldc-3-OCH(3) = 3-(methoxycarbonyl)quinoline-2-carboxylic acid), were synthesized and characterized by elemental analysis, IR, thermogravimetric analysis (TG), and single-crystal X-ray diffraction. When the temperature ranged from room temperature to 70 °C, three isomorphous mononuclear complexes 1, 4 and 7 were obtained in H(2)O/H(2)O + CH(3)OH. As the temperature rose further to above 90 °C, due to the decomposition of 2-position carboxyl group in ligand 2,3-H(2)qldc, the same reactions, respectively, produced three isomorphous 2-D layer-like structures 2, 5 and 8 with 4(4) topology in water. By contrast, when the mixed solvent of H(2)O + CH(3)OH at a 1 : 1 ratio (v/v) was applied, the three above-mentioned reactions respectively gave compounds 3, 6 and 9 with the 3-position esterification of 2,3-H(2)qldc. Compounds 3 and 6 are mononuclear and isomorphous, while complex 9 has a 1-D double-stranded chain-like structure connected by two μ(2)-Cl bridges. Obviously, these results reveal that the reaction temperature and solvent play a critical role in structural direction of these low-dimensional compounds. Meanwhile, the photoluminescent property of the selected compounds is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.