Abstract

The evolution of mechanical properties of separators affected by temperature shifts is imperative for the performance of the lithium-ion battery. The flexible film characteristics hinder the evaluation of the micromechanical properties of separators. In the present study, considering the susceptibility of separators to temperature fluctuations, the temperature distribution of the battery during the discharging process at subzero temperature is obtained. Three sets of separator samples subjected to various temperature shifts are prepared. Through multicycle depth-sensitive nanoindentation, the temperature-dependent weakening of elastic modulus and hardness of separators is experimentally verified. Moreover, the variation trends of elastic modulus, hardness, and hysteresis response of the separator specimens in terms of temperature are investigated via extracting from the multicycle loading-unloading nanoindentation responses. The temperature-dependent variations in the elastic modulus of the separator were investigated by following heating, cooling, and thermostatic processes. Meanwhile, the indentation tests also verify that the effect of temperature shifts on the hardness exhibits an attenuation trend when heating or cooling is followed by a thermostatic process. The variation analysis of nanoindentation hardness as a function of temperature shifts shows typical size effects dependent on the nanoindentation depth. The temperature-induced residual stress and elemental distribution are also analyzed through characterization using X-ray diffraction and energy-dispersive X-ray spectroscopy, respectively. The obtained evolution law of temperature shift-induced mechanical properties of a separator could facilitate the optimal design of the separators and provide the supporting data to enhance the safety performance of lithium-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call