Abstract

FtsZ is an essential division protein in bacteria that functions by forming a ring at midcell that mediates septation. To further study the function of the Z ring the effect of a temperature-sensitive mutation, ftsZ84(Ts), on ring dynamics and septal progression was examined. Shifting a strain carrying an ftsZ84(Ts) mutation to the nonpermissive temperature led to loss of Z rings within 1 min. Septal ingrowth was immediately inhibited, and sharply demarcated septa, present at the time of the shift, were gradually replaced by blunted septa. These results indicate that the Z ring is required throughout septation. Shifting filaments to permissive temperature led to a rapid localization of FtsZ84 at regular intervals. Included in these localization events were complete and partial rings as well as spots, although some of these eventually aborted. These results reveal the rapid dynamics of FtsZ localization and indicate that nucleation sites are formed in the absence of FtsZ function. Interestingly, Z rings could not reform at division sites that were constricted although they could reform at sites that had not begun constriction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.