Abstract

In this paper, integrated temperature sensors based on active nanocomposite planar waveguides are presented. The nanocomposites consist of cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) matrix. When the samples are heated in a temperature range from 25 $^{\circ}{\rm C}$ to 50 $^{\circ}{\rm C}$ , the waveguided photoluminescence of QDs suffers from a strong intensity decrease, which is approximately quadratic dependent on temperature. Moreover, the wavelength peak of the waveguided emission spectrum of CdTe-PMMA shows a blue shift of 0.25 ${\rm nm}/^{\circ}{\rm C}$ , whereas it remains constant in the case of CdSe-PMMA. A temperature resolution of 0.1 $^{\circ}{\rm C}$ is obtained. QD waveguides have great potential for the development of photonic sensors because of their integration, multiplexing, and roll-to-roll fabrication capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.