Abstract

Understanding temperature sensitivity of soil organic carbon (SOC) decomposition from bulk soils and aggregates of long-term fertilized plots is imperative to forecast soil C dynamics. We evaluated the impacts of 43 years of fertilization under a soybean (Glycine max) based cropping system on temperature sensitivity of SOC decomposition (Q10) in an Alfisol. Treatments were: no mineral fertilizer or manure (control), 100% recommended dose of nitrogen (N), N and phosphorus (NP), N, P and potassium (NPK), NPK+lime at 0.4Mgha−1 (NPK+L), 150% recommended NPK (150% NPK), and NPK+farmyard manure (FYM) at 10Mgha−1 (NPK+FYM). Bulk soils as well as macro- and micro-aggregates were incubated for 24days at 25°C and 35°C. Cumulative SOC mineralization (Ct) in the 0–15cm soil layer of bulk soils with NPK+FYM and NPK treated plots were similar but significantly higher than unfertilized control plots. However, both Ct and Q10 values in the NPK+FYM plots were higher than NPK in the 15–30cm soil layer. In the 0–15cm soil layer, NPK+FYM plots had ∼10 and 26% greater Q10 values of macro- and microaggregates than NPK. Activation energies required for bulk soils C mineralization was ∼2 and 3 times higher in NPK+FYM and NPK+L plots, respectively, compared with unfertilized control plots in that layer. Lime along with NPK application increased the activation energy of SOC decomposition. Thus, long-term NPK+FYM and NPK+L applications have great potential for less proportional SOC decomposition than NPK or unfertilized control plots under a temperature rise in these acid soils. However, NPK+FYM management practice is recommended as it has highest SOC accumulation and can have less SOC losses under a temperature rise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call