Abstract

We examined the temperature sensitivity of graded chemical synaptic strength within the pyloric circuit of the spiny lobster stomatogastric ganglion. Cooling from 20.4 degrees C to 11.3 degrees C reduced the graded synaptic potential (GSP) amplitude at all six pyloric synapses tested. Cooling appeared to reduce the slope of the linear part of the input-output curve at three of these synapses, and did not significantly alter the threshold for transmitter release at any synapses. Pairs of neurons with a presynaptic pyloric dilator (PD) cell showed reductions in graded synaptic strength at 16.5 degrees C but those with presynaptic lateral pyloric (LP) or ventral dilator (VD) cells did not. A generalized decrease in input resistance is not responsible for the reduced GSP amplitude upon cooling, as determined by input resistance, action potential amplitude and electrical coupling measurements. We conclude that cooling reduces graded chemical strength by a direct synaptic action. Since the PD and VD cells use the same transmitter and act on some of the same postsynaptic cells, their differential sensitivity to cooling further suggests a presynaptic site of action. The temperature range used in our experiments encompasses the range that the animal normally encounters in nature. Thus, the relative importance of graded synaptic interactions in generating the pyloric motor rhythm may vary with transient changes in temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call