Abstract
We measure electron- and nuclear-spin transition frequencies in the ground state of nitrogen-vacancy (N-V) centers in diamond for two nitrogen isotopes (14N-V and 15N-V) over temperatures ranging from 77 to 400 K. Measurements are performed using Ramsey interferometry and direct optical readout of the nuclear and electron spins. We extract coupling parameters Q (for 14N-V), D, A‖, A⊥, and , and their temperature dependences for both isotopes. The temperature dependences of the nuclear-spin transitions within the spin manifold near room temperature are found to be 0.52(1) ppm/K for 14N-V(|mI = -1⟩ ↔ |mI = +1⟩) and -1.1(1) ppm/K for 15N-V(|mI = -1/2⟩ ↔ |mI = +1/2⟩). An isotopic shift in the zero-field splitting parameter D between 14N-V and 15N-V is measured to be ~ 120 kHz. Residual transverse magnetic fields are observed to shift the nuclear-spin transition frequencies, especially for 15N-V. We have precisely determined the set of parameters relevant for the development of nuclear-spin-based diamond quantum sensors with greatly reduced sensitivity to environmental factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.