Abstract
We used error-prone PCR to generate mutations in a subtilisin protease-encoding gene, and screened for recombinants that expressed temperature-sensitive (TS) variants. From the dozens of mutations that we detected in the recombinant genes we found that those mutations that affected aspartate-75 had the most profound effect on temperature stability. We thus focused our analysis on two variants of subtilisin C, the more heat-sensitive variant 24 (V24), with amino acid changes D75G, L234M and Q274P; and variant 25 (V25), with a single amino acid change, D75A. For V24 a two log-fold reduction in activity occurs in under 10 min at 50°C. For V25, a two log-fold reduction occurs at 60°C, a temperature that reduces the activity of the wild type enzyme by about 30%. The V24 variant fully inactivates enzymes commonly used in molecular biology research and in molecular diagnostics, and is stabilized against autolysis with propylene glycol concentrations of 10% or greater. The subtilisin variants are produced by a strain of Bacillus subtilis that lacks expression of its native secreted proteases, and the variants can be isolated from the supernatants using nickel affinity chromatography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.