Abstract

A biopolymer-inorganic hybrid system (MSN@PBLGF) is designed and fabricated from mesoporous silica nanoparticles (MSNs) and folic acid (FA)-terminated temperature-sensitive synthetic polypeptide, i.e., poly(γ-benzyl-l-glutamate) (PBLG) derivative, through a thiol-disulfide exchange reaction, where MSNs with high drug loading capacity serve as drug nanocarriers and the biocompatible PBLG biopolymer brushes installed on MSN surface through disulfide bonds endow the system with tumor-specific recognition ability and GSH/temperature dual-stimuli responsiveness. Controlled drug release experiments indicate that DOX can be tightly hosted in the system with limited premature release, but efficiently released in response to an increased concentration of GSH and/or an elevated temperature. Intracellular experiments demonstrate that the DOX-loaded MSN@PBLGF nanohybrid shows outstanding cellular uptake and cell-growth inhibition effects on human lung cancer cell line A549 in comparison with healthy human cells such as hepatocyte cells LO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call