Abstract

Terminases comprise essential components of molecular motors required to package viral DNA into capsids in a variety of DNA virus systems. Previous studies indicated that the herpes simplex virus type 1 U(L)15 protein (pU(L)15) interacts with the pU(L)28 moiety of a pU(L)28-pU(L)33 complex to form the likely viral terminase. In the current study, a novel temperature-sensitive mutant virus was shown to contain a mutation in U(L)33 codon 61 predicted to change threonine to proline. At the nonpermissive temperature, this virus, designated ts8-22, replicated viral DNA and produced capsids that became enveloped at the inner nuclear membrane but failed to form plaques or to cleave or package viral DNA. Incubation at the nonpermissive temperature also precluded coimmunoprecipitation of U(L)33 protein with its normal interaction partners encoded by U(L)28 and U(L)15 in ts8-22-infected cells and with pU(L)28 in transient-expression assays. Moreover, a temperature-sensitive mutation in U(L)15 precluded coimmunoprecipitation of pU(L)15 with the U(L)28 and U(L)33 proteins at the nonpermissive temperature. We conclude that interactions between putative terminase components are tightly linked to successful viral DNA cleavage and packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.