Abstract

The current study presents a scalable approach for the preparation of temperature-responsive PEG/SiO2/PNIPAM-PEA Janus particles and, for the first time, investigates their potential applications in stabilizing foam and defoaming by adjusting the temperature. The method utilizes a (W1 + O)/W2 emulsion system, which incorporates appropriate surfactants to stabilize the emulsion and prevent rapid dissolution of the hydrophilic triblock polymer PEG-b-PTEPM-b-PNIPAM in water. The PEG/SiO2/PNIPAM-PEA Janus particles with temperature-responsive characteristics were synthesized in a single step that combined the sol-gel reaction and photoinduced free radical polymerization. The contact angle of the hydrophilic PEG/SiO2/PNIPAM surface was measured to be 54.7 ± 0.1°, while the contact angle of the hydrophobic PEA surface was found to be 122.4 ± 0.1°. By incorporating PEG/SiO2/PNIPAM-PEA Janus particles at a temperature of 25 °C, the foam's half-life is significantly prolonged from 42 s to nearly 30 min. However, with an increase in temperature to 50 °C, the foam's half-life rapidly diminished to only 44 s. This innovative application effectively enhances foam stabilization at low temperatures and facilitates the rapid dissipation of foam at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.