Abstract
A series of dialkylaminostyrylhetarene dyes constructed from electron-rich and electron-deficient moieties of various structures connected via vinylene π-bridges are introduced as temperature-sensitive luminophores. The temperature dependent emission of the dyes in the acidified dichloromethane solutions derives from temperature-induced shift of the equilibrium between neutral and protonated forms of the dyes. The heating-induced blue shift and intensification of emission of neutral form of the dyes make them a promising basis for development of nanoparticles exhibiting temperature-sensitivity in aqueous solutions at pH typical of biological liquids. Hydrophobicity-driven incorporation of the water insoluble dyes into L-α-phosphatidylcholine(PC)-based bilayers allows to obtain water dispersible dye-PC aggregates, and to follow their emission in the aqueous solutions. Structure of the dyes has strong impact on the efficacy of the dyes incorporation into the PC-based bilayers, temperature sensitivity of emission of the dye-PC aggregates and its reversibility under the heating/cooling cycles. This enables structural optimization of the dyes in order to obtain the dye-PC species demonstrating maximal temperature dependence and reversibility of their luminescence in aqueous solutions. The selected leader exhibits low cytotoxicity exemplified for M−HeLa and Chang Liver cell lines, while the efficient cell internalization of the dye, manifested in the staining of the cell cytoplasm, opens further opportunities for biosensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.